Fonte: International Journal of Sports Physiology and Performance, 2018.
Autores: Loturco, I., Pereira, L. A., Winckler, C., Santos, W. L., Kobal, R., McGuigan, M.

 This study examined the relationships between different loading intensities and movement velocities in the bench-press exercise (BP) in Paralympic powerlifters. Methods: Seventeen National Paralympic powerlifters performed maximum dynamic strength tests to determine their BP one-repetition maximum (1RM) in a Smith-machine device. A linear position transducer was used to measure the movement velocity over a comprehensive range of loads. Linear regression analysis was performed to establish the relationships between the different bar-velocities and the distinct percentages of 1RM (%1RM). Results: Overall, the correlations between bar-velocities and %1RM were strong over the entire range of loads (R² values ranged from 0.80 to 0.91), but the precision of the predictive equations (expressed as mean differences [%] between actual and predicted 1RM values) were higher at heavier loading intensities (~20% for loads ≤ 70% 1RM, and ~5% for loads ≥ 70%1RM). In addition, it seems that these very strong athletes (e.g., 1RM relative in the BP = 2.22 ± 0.36 kg.kg-1, for male participants) perform BP 1RM assessments at lower velocities than those previously reported in the literature. Conclusions: The load-velocity relationship was strong and consistent in Paralympic powerlifters, especially at higher loads (≥ 70% 1RM). Therefore, Paralympic coaches can use the predictive equations and the reference values provided here to determine and monitor the BP loading intensity in National Paralympic powerlifters.

Page Reader Press Enter to Read Page Content Out Loud Press Enter to Pause or Restart Reading Page Content Out Loud Press Enter to Stop Reading Page Content Out Loud Screen Reader Support